Let ABC be an isosceles triangle with AB=AC. Suppose that the angle bisector of angle B meets the side AC at a point D such that BC=BD+AD. Measure of the angle A in degrees, is
A
100.00
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
100.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
100
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
BC=BD+AD (Given)
Let BC=a,BD=p,AD=q a=p+q
or ap=1+qp
Using sine law in △BDC and in △ABD, we get sin3xsin2x=1+sinxsin4x⇒sin3x⋅sin4x−sinx⋅sin2xsin2x⋅sin4x=1 ⇒(cosx−cos7x)−(cosx−cos3x)=cos2x−cos6x ⇒cos3x−cos7x=cos2x−cos6x ⇒2sin5x⋅sin2x=2sin4x⋅sin2x
As sin2x≠0, sin5x=sin4x ⇒5x+4x=180∘⇒x=20∘
Hence, ∠A=180∘−4x=180∘−80∘=100∘