Let ABCD be a square and let P be a point on segment CD such that DP:PC=1:2. Let Q be a point on segment AP such that ∠BQP=90o. Then the ratio of the area of quadrilateral PQBC to the area of the square ABCD is?
ar□PBCQ=ar□ABCD−ar△AQB−ar△PDAar△PDA=12×3x×3x=9x22In △PDA,sinα=PDPA=x√10x=1√10In △AQB,sinα=AQAB=AQ3x=1√10⇒AQ=3x√10cosα=QBAB=QB3x=3√10ar△AQB=12×QB×AQ=12×3x√10×9x√10ar△AQB=27x220ar□PQBC=ar□ABCD−ar△AQB−ar△PDAar□PQBC=9x2−27x220−9x22ar□PQBC=9x2−57x220=123x220∴ar□PBCQar□ABCD=123x220×19x2⇒ar□PBCQar□ABCD=4160