The correct option is
A True
Given is a rhombus ABCD with
∠A=67o &
△ DEC is an equilateral triangle.
So DE=EC=CD & ∠DEC=∠ECD=∠CDE=60o
Also EC=CD=CB [ Since all sides of the rhombus are equal ]
Now ∠A=∠BCD [ Opposite angles are equal in a rhombus ]
So ∠ECB=∠ECD+∠BCD
⇒∠ECB=67o+60o
⇒∠ECB=127o
Since EC=CB so △ ECB is isosceles triangle.
In △ ECB,
∠ECB+∠BEC+∠CBE=180o
⇒2∠CBE+127o=180o[ Base angles in isosceles triangle are equal ⇒∠CEB=∠CBE ]
⇒2∠CBE=180o−127o
⇒2∠CBE=53o
⇒∠CBE=53o2
⇒∠CBE=26.5o