Let ABCD is a square with sides of unit length. Points E and F are taken sides AB and AD respectively so that AE=AF. Let P be a point inside the square □ABCD.
The maximum possible area of quadrilateral CDFE is
We have
The sides of square ABCD is unit
i.e. AB=BC=CD=DA=1unit
Now, According to given question
ar(ΔEAF)=12×x×x
ar(ΔEAF)=12x2
ar(ΔEBC)=12×(1−x)×1
ar(ΔEBC)=12(1−x)
ar(□ABCD)=1×1=1
Now,
ar(□CDFE)=ar(□ABCD)−ar(ΔEAF)−ar(ΔEBC)
ar(□CDFE)=1−x22−(1−x)2
ar(□CDFE)=2−x2−(1−x)2
ar(□CDFE)=(1+x−x2)2
We know that,
x=12 Then,
ar(□CDFE)=(1+12−(12)2)2
=(32−14)2
=58