Let α and β be complex numbers satisfying |α+1+i|=1 and |β−2−3i|=6 such that 6|α|max−|β|max=√a−√b, where a,b∈R+. Then the value of √b2−2a is
Open in App
Solution
|α+1+i|=1 ⇒|α−(−1−i)|=1 α represents circle with centre at C1(−1,−1) and radius = 1 unit.
|α|=|α−0|= distance from point on circle to origin. |α|max=OC1+r=√2+1
Similarly, for |β−(2+3i)|=6 |β|max=√13+6
So, 6|α|max−|β|max=6√2−√13=√72−√13 ∴√b2−2a=√169−144=5