Let α and β be non-zero real numbers such that 2(cosβ–cosα)+cosαcosβ=1. Then which of the following is/are true?
A
tan(α2)−√3tan(β2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
√3tan(α2)+tan(β2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan(α2)+√3tan(β2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
√3tan(α2)−tan(β2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ctan(α2)+√3tan(β2)=0 As 2(cosβ–cosα)=1–cosα.cosβ ⇒cosα=2cosβ−12−cosβ
Using componendo and dividendo, ⇒1−cosα1+cosα=3(1−cosβ1+cosβ) ⇒tan2α2−3tan2β2=0
So, tanα2+√3tanβ2=0
or tanα2−√3tanβ2=0