Let α and β be non zero real numbers such that 2(cosβ−cosα)+cosαcosβ=1. Then which of the following is/are true?
A
√3tan(α2)−tan(β2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan(α2)−√3tan(β2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan(α2)+√3tan(β2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
√3tan(α2)+tan(β2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Btan(α2)−√3tan(β2)=0 C tan(α2)+√3tan(β2)=0 We have, 2(cosβ−cosα)+cosαcosβ=1 Or 4(cosβ−cosα)+2cosαcosβ=2 ⇒1−cosα+cosβ−cosαcosβ =3+3cosα−3cosβ−3cosααcosβ ⇒(1−cosα)(1+cosβ)=3(1+cosα)(1−cosβ) ⇒(1−cosα)(1+cosα)=3(1−cosβ)(1+cosβ) ⇒tan2α2=3tan2β2 ∴tanα2±√3tanβ2=0