Let α and β be nonzero real numbers such that 2(cosβ−cosα)+cosαcosβ=1. Then which of the following is/are true?
Since, cos2α=1−tan2α1−tan2α
i.e.,
cosα=1−a1+a; where a=tan2α2
cosβ=1−b1+b; where b=tan2β2
From (1), we get
2[(1−b1+b)−(1−a1+a)]+[(1−a1+a).(1−b1+b)]−1=0
⇒2(1−b)(1+a)−2(1−a)(1+b)+(1−a)(1−b)−(1+a)(1+b)(1+a)(1+b)=0
⇒2(1−b)(1+a)−2(1−a)(1+b)+(1−a)(1−b)−(1+a)(1+b)=0
⇒a=3b
⇒tan2α2=3tan2β2
⇒tan2α2−√3tan2β2=0
⇒(tanα2−√3tanβ2)((tanα2+√3tanβ2)=0
⇒tanα2−√3tanβ2=0,and tanα2+√3tanβ2=0
Therefore, Option (1) and (3) are correct.