The correct option is C tan(α2)−√3tan(β2)=0
2(cosβ−cosα)+cosαcosβ=1 ⋯(1)
cosα=1−a1+a; where a=tan2α2
cosβ=1−b1+b; where b=tan2β2
From (1), we get
2[(1−b1+b)−(1−a1+a)]+[(1−a1+a).(1−b1+b)]−1=0
⇒2(1−b)(1+a)−2(1−a)(1+b)+(1−a)(1−b)−(1+a)(1+b)=0
⇒a=3b⇒tan2α2=3tan2β2
⇒tanα2=±√3tanβ2
Therefore, Option (1) and (3) are correct.