The correct option is
B c=0Given:
α,β are roots of the equation
x2+ax+b=0 and
(α+β),(α−β),(β−α),(−(α+β)) are roots of the equation
x4+ax3+cx2+dx+e=0To find which of the given statement is false
Sol: As α,β are roots of the equation x2+ax+b=0
Hence α+β=−a,αβ=b..........(i)
(α+β),(α−β),(β−α),(−(α+β)) are roots of the equation x4+ax3+cx2+dx+e=0
Hence, (α+β)+(α−β)+(β−α)+(−(α+β))=−a⟹a=0...(ii)
And,
(α+β)(α−β)+(α+β)(β−α)+(α+β)(−(α+β))+(α−β)(β−α)+(α−β)(−(α+β))+(β−α)(−(α+β))=c
⟹(0)(α−β)+(0)(β−α)+(0)(−(0))+(α−β)(β−α)+(α−β)(−(0))+(β−α)(−(0))=c
[as α+β=−a=0 from (i) and (ii)]
⟹(α−β)(β−α)=c
⟹αβ−α2−β2−αβ=c⟹−(α2+β2)=c
⟹−[(α+β)2−2αβ]=c [as a2+b2=(a+b)2−2ab]
⟹−(02−2(b))=c⟹c=2b
And,
(α+β)(α−β)(β−α)+(α+β)(α−β)(−(α+β))+(α+β)(β−α)(−(α+β))+(α−β)(β−α)(−(α+β))=−d⟹(0)(α−β)(β−α)+(0)(α−β)(−(0))+(0)(β−α)(−(0))+(α−β)(β−α)(−(0))=−d
[as α+β=−a=0 from (i) and (ii)]
⟹d=0
And
(α+β)(α−β)(β−α)(−(α+β))=e⟹e=0
[as α+β=−a=0 from (i) and (ii)]