The correct option is A −3
x2−x+1=0
So, α=−ω and β=−ω2, where ω is the cube root of unity.
Now, α+β+α2+β2+⋯+α100+β100
=(α+α2+⋯+α100)+(β+β2+⋯+β100)
=α(1−α100)1−α+β(1−β100)1−β
=−ω(1−ω100)1+ω+−ω2(1−ω200)1+ω2
=−ω−ω2(1−ω)+−ω2−ω(1−ω2)
=1ω(1−ω)+ω(1−ω2)
=ω2(1−ω)+ω(1−ω2)
=ω2−1+ω−1
=ω+ω2−2
=−1−2
=−3