wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let α and β be roots of x26(t22t+2)x2=0
with α>β. If an=αnβn for n , then find the minimum value of a1002a98a99 (where t R)

Open in App
Solution

x26(t22t+2)x2=0rootsareα,βα26(t22t+2)α2α22=6(t22t+2)αα100=6(t22t+2)α98α1002α98=6(t22t+2)α99β1002β98=6(t22t+2)β99ax=αxβxa1002a98a99=α1002α98β100+2β98α99β99=6(t22t+2)(α99β99)(α99β99)minimumvalueof(t22t+2)=1sominimumvalue=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon