Let α and β be the roots of equation px2+qx+r=0,p≠0. If p,q and r in AP and 1α+1β=4, then the value of |α−β| is
PLAN: If ax2+bx+c=0 has roots α and β, then α+β=−ba and αβ=ca. Find the values of α+β and αβ and then put in (α−β)2=(α+β)2−4αβ to get required value.
Given, α and β are roots of px2+qx+t=0,p≠0.
∴α+β=−qp,αβ=rp...(i)
Since, p,q and r are in AP.
∴2q=p+r....(ii)
Also, 1α+1β=4⇒α+βαβ=4
⇒α+β=4αβ⇒−qp=4rp [from Eq.(i)]
⇒q=−4r
On putting the value of q in Eq. (ii), we get
⇒2(−4r)=p+r⇒p=−9r
Now, α+β=−qp=4rp=4r−9r=−49
and αβ=rp=r−9r=1−9
∴(α−β)2=(α+β)2−4αβ=1681+49=16+3681⇒(α−β)2=5281⇒|α−β|=29√13