Let α and β be the roots of x2−6x−2=0 with α>β if an=αn−βn for n≥1 then the value of a10−2a83a9=
The correct option is D. 2
Given:
α and β be the roots of x2−6x−2=0
α2−6α−2=0
⇒α2=6α+2
⇒α2=6(α)2−1+2(α)2−2
⇒α10=6(α)10−1+2(α)10−2
⇒α10=6α9+2α8-------(1)
β2−6β−2=0
⇒β10=6β9+2β8-------(2)
substract eq (2) from eq (1)
α10−β10=6(α9−β9)+2(α8−β8)
⇒a10=6a9+2a8 [∵an=αn−βn]
⇒a10−2a8=6a9
⇒a10−2a8=2×3a9
⇒a10−2a83a9=2