Let α and β be the zeros of f(x)=ax2+bx+c,a≠0 and Δ=b2−4ac. If α+β,α2+β2 and α3+β3 are in G.P., then :
A
Δ≠0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
b.Δ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
c.Δ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
bc≠0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Bb.Δ=0 Cc.Δ=0 f(x)=ax2+bx+c,α,βarerootsofequation∴α+β=−ba,αβ=caα2+β2=(α+β)2−2αβ=b2a2−2ca=b2−2aca2α3+β3=(α+β)3−3αβ(α+β)=−b3a3−3ca(−ba)=3abc−b3a3given,α+β,α2+β2,α3+β3areinG.P∴(α2+β2)2=(α+β)(α3+β3)(∵theyareinG.P)∴(b2−2ac)2a4=(−ba)(3abc−b3a3)∴b4+4a2c2−4ab2c=−3ab2c+b4⇒b2−4ac=0⇒Δ=0∴bΔ=0&cΔ=0