The correct option is B −256
Given :
x2+2x+2=0 and its roots are α, β.
x2+2x+1+1=0
⇒(x+1)2+1=0 [Since, a2+2ab+b2=(a+b)2]
⇒(x+1)2=−1
⇒x+1=√−1
⇒x1=−1+i ; x2=−1−i [Since, √−1=i]
Assuming α=−1+i and β=−1−i
Squaring on both sides, we get
⇒α2=(−1+i)2 and β2=(−1−i)2
⇒α2=1+i2−2i and β2=1+i2+2i
⇒α2=1−1−2i and β2=1−1+2i [Since, i2=−1]
∴α2=−2i and β2=2i
Now consider, α15+β15=(α14×α)+(β14×β)
=[(α2)7×α]+[(β2)7×β)]
=(−2i)7×(−1+i)+(2i)7×(−1−i)
=−27i7(−1+i)−27i7(1+i)
=−27i7(−1+i+1+i)
=−128i7(2i)
=(−128×2)×i8
=−256(i2)4
=−256(−1)4
∴α15+β15=−256