The correct option is C 58
Given that l+m=n ....(1)
l2+m2=n2 ....(2)
Squaring equation (1)
l2+m2+2lm=n2 ....(3)
From equations (2) and (3)
lm=0⇒l=0 or m=0
Case (1) l=0
⇒m=n
⇒l2+m2+n2=0
⇒m=n=±1√2
∴(l,m,n)≡(0,1√2,1√2) or (0,−1√2,−1√2)
Case (2) m=0
⇒l=n
⇒l2+m2+n2=0
⇒l=n=±1√2
∴(l,m,n)≡(1√2,0,1√2) or (−1√2,0,−1√2)
⇒→a≡(0,1√2,1√2),→b=(1√2,0,1√2)cosα=→a⋅→b|→a||→b|=12sinα=±√32⇒sin4α+cos4α=116+916=58