Let α, β be any two positive values of x for which 2cosx, |cosx| and 1−3cos2x are in GP. The minimum value of |α−β|
As 2cosx,|cosx|and (1−3cos2x) are in G.P. so
by using the property of geometric mean we get,
2cosx(1−3cos2x)=|cosx|2
⇒2cosx−6cos3x=cos2x
⇒6cos3x+cos2x−2cosx=0
⇒cosx(6cos2x+cosx−2)=0
⇒cosx(6cos2x+4cosx−3cosx−2)=0
⇒cosx(2cosx(3cosx+2)−1(3cosx+2))=0
⇒cosx(2cosx−1)(3cosx+2)=0
cosx=0,12,−23
α and β are
positive values , so we discard the last root,
so, α,β≡π2,π3
|α−β|=π2−π3=π6