The correct option is B c⋅Δ=0
Since, α,β be roots of the equation ax2+bx+c=0
⇒α+β=−ba,αβ=ca
Now, α2+β2=(α+β)2−2αβ
⇒α2+β2=b2−2aca2 .....(1)
Also, α3+β3=(α+β)(α2+β2−αβ)
⇒α3+β3=(−ba)(b2−3aca2) ....(2)
Given, α+β,α2+β2,α3+β3 are in GP
⇒(α2+β2)2=(α+β)(α3+β3)
Put the values from (1) and (2),we get
⇒(b2−2ac)2=b2(b2−3ac)
⇒ab2c−4a2c2=0
⇒ac(b2−4ac)=0
Since, a≠0
⇒c.Δ=0 (Given, Δ=b2−4ac).