Let α,β be such that π < α−β < 3π. If sin α+sin β=−2165 and cos α+cosβ=−2765, then the value of cos α−β2is
Given,sinα+sinβ=−2165andcosα+cosβ=−2765Onsquaringandaddingtheaboveequations,wegetsin2α+sin2β+2sinαsinβ+cos2α+cos2β+2cosαcosβ=(2165)2+(2765)2⇒2+2(sinαsinβ+cosαcosβ)=11704225⇒2+2cos(α−β)=11704225⇒4cos2(α−β2)⇒cos2(α−β2)=9130⇒cos(α−β2)=−3√130∵π<α−β<3π