The correct option is D −3√130
sin α+sin β=−2165, cos α+cos β=−2765Now (sin α+sin β)2+(cos α+cos β)2=(−2165)2+(−2765)2⇒2+2 sin α sin β+2 cos α cos β=441652+729652⇒2+2[cos(α−β)]=1170(65)2⇒2.2 cos2(α+β2)=1170(65)2⇒cos(α−β2)=3√130130=3√130Therefore cos(α−β2)=−3√130,{∵π2<α−β2<3π2}.