The correct option is A 2+3α1+α, 2+3β1+β
ax2+bx+c=0⋯(1)
a(x−2)2−b(x−2)(x−3)+c(x−3)2=0
Putting x=3
a×12=0⇒a=0
Which is not possible, so (x−3) is not the root of the equation.
Let the roots of the equation a(x−2)2−b(x−2)(x−3)+c(x−3)2=0 be x1,x2
Rewritting the equation as,
(x−3)2[a{−(x−2x−3)}2+b{−(x−2x−3)}+c]=0⋯(2)
Now, compairing from equation (1), we can say that,
−(x1−2x1−3)=α−(x2−2x2−3)=β
Solving anyone from them,
−(x1−2x1−3)=α⇒x1−3+1x1−3=−α⇒1+1x1−3=−α⇒x1−3=−(11+α)⇒x1=3−11+α=2+3α1+α
Similarly,
x2=2+3β1+β
Hence, the roots of the equation are,
2+3α1+α, 2+3β1+β