Let α,β be the roots of the equation ax2+bx+c=0. Let Sn=αn+βn for n≥1 Evaluate the determinant ∣∣
∣∣31+S11+S21+S11+S21+S31+S21+S31+S4∣∣
∣∣
A
(a+b+c)2(b2−4ac)a4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(a+b+c)2(b2−4ac)a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a+b+c)2(b2+4ac)a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a+b+c)2(b2+4ac)a4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(a+b+c)2(b2−4ac)a4 Since α,β are the roots of the equation ax2+bx+c=0 ∴α+β=−ba and αβ=ca Let Δ=∣∣
∣∣31+S11+S21+S11+S21+S31+S21+S31+S4∣∣
∣∣ =∣∣
∣
∣∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β31+α3+β31+α4+β4∣∣
∣
∣∣ =∣∣
∣∣1111αβ1α2β2∣∣
∣∣×∣∣
∣∣1111αβ1α2β3∣∣
∣∣ =(Δ1×Δ1) (say) ∴Δ=Δ21 (i) ∴Δ1=∣∣
∣∣1111αβ1α2β2∣∣
∣∣ Applying C2→C2−C1 and C3→C3−C1, then Δ1=∣∣
∣∣1001α−1β−11α2−1β2−1∣∣
∣∣ Expanding along R1 ∴Δ1=∣∣∣α−1β−1α2−1β2−1∣∣∣ =(α−1)(β−1)∣∣∣11α+1β+1∣∣∣ ={αβ−(α+β)+1}(β−α) ={αβ−(α+β)+1}√{(α+β)2−4αβ} =(ca+ba+1)√(b2a2−4ca) Δ1=(a+b+c)√(b2−4ac)a2 ∴Δ21=(a+b+c)2(b2−4ac)a4 Hence, Δ=Δ21=(a+b+c)2(b2−4ac)a4