The correct option is A x2−11x+30=0
Given: (1−m)x2−(2−3m)x−3m=0
On comparing with standard form of quadratic equation ax2+bx+c=0
we get, a=(1−m),b=−(2−3m),c=−3m
If roots are distinct integers, then discriminant should be perfect square of an integer.
D=b2−4ac=(−(2−3m))2−4.(1−m).(−3m)
D=4+9m2−12m+12m−12m2
D=−3m2+4
Also, D>0⇒−3m2+4>0
⇒3m2−4<0
⇒(√3m−2)(√3m+2)<0
⇒m∈(−2√3,2√3)
Since, m∈W⇒m∈{0,1}
So, If m=0, D=−3(0)2+4=4, it is a perfect square.
m=1, D=−3(1)2+4=1, it is a perfect square.
Hence, the possible values are 0,1.
∴α=0;β=1
We need to find the equation whose roots are α+5 and β+5
∴roots are 0+5=5,1+5=6
∴The equation is (x−5)(x−6)=0
⇒x2−11x+30=0