Let α,β denote the cube roots of unity other than 1 and α≠β. Let S=302∑n=0(−1)n(αβ)n. Then, the value of S is
A
Either −2ω or −2ω2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Either −2ω or 2ω2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Either 2ω or −2ω2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Either 2ω or 2ω2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B Either −2ω or −2ω2 Case I: Let α=ω and β=ω2 ∴S=302∑n=0(−1)n(ωω2)n =302∑n=0(−1)n(ω2)n =1−ω2+ω4−ω6+ω8−ω10+ω12+⋯+ω600−ω602+ω604 =1−ω2+ω−1+ω2−ω+1+⋯+1−ω2+ω =0+⋯+1−ω2+ω =−ω2−ω2=−2ω2[∵1+ω+ω2=0]
Case II: Let α=ω2 and β=ω ∴S=302∑n=0(−1)n(ω2ω)n =302∑n=0(−1)n(ω4ω3)n =302∑n=0(−1)n(ω) =1−ω+ω2−ω3+ω4−ω5+ω6−⋯+ω300−ω301+ω302 =1−ω+ω2−1+ω−ω2+1−⋯+1−ω+ω2 =0+⋯+1+ω2−ω =−ω−ω=−2ω