Let α,β,γ and a,b,c are the complex numbers such that αa+βb+γc=1+i and aα+bβ+cγ=0. If α2a2+β2b2+γ2c2=p+iq, where p,q∈R, then the value of p+q is
Open in App
Solution
Given : αa+βb+γc=1+i and aα+bβ+cγ=0
Now, αa+βb+γc=1+i
Squaring on both sides, we get (αa+βb+γc)2=(1+i)2⇒α2a2+β2b2+γ2c2+2αa⋅βb+2βb⋅γc+2γc⋅αa=2i⇒α2a2+β2b2+γ2c2+2αβγabc(aα+bβ+cγ)=2i⇒α2a2+β2b2+γ2c2=2i=0+2i⇒p+qi=0+2i⇒p=0,q=2
So, p+q=0+2=2