logα(3x−5y−z)=logβ(x+8z)=logγ(y−3z−x)=k⇒logαk=3x−5y−z⋯(1)⇒logβk=x+8z⋯(2)⇒logγk=−x+y−3z⋯(3)
Now,
logαa=2, log2β2b=4, log4γ216c=5⇒a=α2, 2b=(2β)4, 16c=(4y2)5⇒a=α2, b=23β4, c=26y10
Therefore,
(a8)(b4)(c2)=abc26=23×(αβ2γ5)2
From equation (1),(2) and (3), we get
logαk+2logβk+5logγk=3x−5y−z+2(x+8z)+5(−x+y−3z)⇒log(αβ2γ5)k=0⇒αβ2γ5=1
Hence,
(a8)(b4)(c2)=8