Let α,β,γ are the real roots of the equation x3+ax2+bx+c=0(a,b,c∈Randa≠0). If the system of equations (in u,v,w) given by αu+βv+γw=0,βu+γv+αw=0,αγu+αv+βw=0 has non-trivial solutions, then the value of a2/b is ...................
Open in App
Solution
Given α,β,γ are the real roots of the equation x3+ax2+bx+c=0(a,b,c∈Randa≠0). And the system of equations (in u,v,w) given by αu+βv+γw=0,βu+γv+αw=0,αγu+αv+βw=0 has non-trivial solution. ⇒∣∣
∣
∣∣αβγβγαγαβ∣∣
∣
∣∣=0 ⇒(α+β+γ)(αβ+βγ+γα−α2−β2−γ2)=0 ⇒(α+β+γ)(3(αβ+βγ+γα)−(α+β+γ)2)=0 ⇒−a(3b−a2)=0 ∴a2b=3 (∵a≠0)