The correct options are
A The maximum value of a2+b2a2+3ab+5b2 is 2
B The minimum value of a2+b2a2+3ab+5b2 is 211
C If →V1=a^i+b^j+c^k makes an angle π3 with →V2=^i+^j+√2^k, then the number of values of θ∈[0,2π] is 3.
Given : aα2+bα+c=(sinθ)α2+(cosθ)αaβ2+bβ+c=(sinθ)β2+(cosθ)βaγ2+bγ+c=(sinθ)γ2+(cosθ)γ
Now, (a−sinθ)x2+(b−cosθ)x+c=0
This equation has roots as α,β,γ
As this is a quadratic having more than 2 roots, so this is an identity
(a−sinθ)=0, (b−cosθ)=0, c=0⇒a=sinθ, b=cosθ
Now, E=a2+b2a2+3ab+5b2
⇒E=1sin2θ+3sinθcosθ+5cos2θ⇒E=21−cos2θ+3sin2θ+5(1+cos2θ)⇒E=26+3sin2θ+4cos2θ
We know that,
3sin2θ+4cos2θ∈[−5,5]
E∈[211,2]
→V1=a^i+b^j+c^k⇒→V1=cosθ^i+sinθ^j→V2=^i+^j+√2^kcosπ3=→V1⋅→V2|→V1||→V2|⇒12=cosθ+sinθ1×2⇒cosθ+sinθ=1⇒cos(θ+π4)=1√2⇒sin(θ+π4)=1√2⇒θ+π4=π4,3π4,9π4∴θ=0,π2,2π