wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let α,β,γ be positive integers and logα(3x5yz)=logβ(x+8z)=logγ(y3zx) (wherever defined). If logαa=2, log2β2b=4, log4γ216c=5(a,b,c>0), then value of (a8)(b4)(c2)is

Open in App
Solution

logα(3x5yz)=logβ(x+8z)=logγ(y3zx)=klogαk=3x5yz(1)logβk=x+8z(2)logγk=x+y3z(3)

Now, logαa=2, log2β2b=4, log4γ216c=5
a=α2, 2b=(2β)4, 16c=(4y2)5a=α2, b=23β4, c=26y10
Therefore, (a8)(b4)(c2)=abc26=23×(αβ2γ5)2
From equation (1),(2) and (3), we get
logαk+2logβk+5logγk=3x5yz+2(x+8z)+5(x+y3z)log(αβ2γ5)k=0αβ2γ5=1

Hence, (a8)(b4)(c2)=8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon