Given
α,β,γ,δ ϵ(0,π) 2cosα+6cosβ+7cosγ+9cosδ=0
2sinα−6sinβ+7sinγ−9sinδ=0,
Now,
2cosα+6cosβ+7cosγ+9cosδ=0 [given]
⇒2cosα+9cosδ=−(6cosβ+7cosγ)
⇒(2cosα+9cosδ)2=(−(6cosβ+7cosγ))2 [Squaring on both sides]
⇒4cos2α+81cos2δ+36cosαcosδ=36cos2β+49cos2γ+84cosβcosγ …(i)
and
2sinα−6sinβ+7sinγ−9sinδ=0 [given]
⇒2sinα−9sinδ=6sinβ−7sinγ
⇒(2sinα−9sinδ)2=(6sinβ−7sinγ)2 [Squaring on both sides]
⇒4sin2α+81sin2δ−36sinαsinδ=36sin2β+49sin2γ−84sinβsinγ …(ii)
Add (i),(ii)
⇒4cos2α+81cos2δ+36cosαcosδ+4sin2α+81sin2δ−36sinαsinδ
=36cos2β+49cos2γ+84cosβcosγ+36sin2β+49sin2γ−84sinβsinγ
⇒4cos2α+4sin2α+81sin2δ+81cos2δ+36cosαcosδ−36sinαsinδ
=36cos2β+36sin2β+49cos2γ+49cos2γ+84cosβcosγ−84sinβsinγ
⇒4[cos2α+sin2α]+81[sin2δ+cos2δ]+36[cosαcosδ−sinαsinδ]
=36[cos2β+sin2β]+49[cos2γ+cos2γ]+84[cosβcosγ−sinβsinγ]
⇒4(1)+81(1)+36(cos(α+δ))=36(1)+49(1)+84(cos(β+γ))
⇒85+36(cos(α+δ))=85+84(cos(β+γ))
⇒36(cos(α+δ))=84(cos(β+γ))
⇒3(cos(α+δ))=7(cos(β+γ))
by comparing with λcos(α+δ)=7cos(β+γ)
we get λ=3