wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let α,βR. If α,β2 are the roots of quadratic equation x2px+1=0 and α2,β equation x2qx+8=0, then the value r if r8 is the arithmetic means of p and q, is

A
832
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
83
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
838
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
834
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 83

For the equation x2px+1=0

the product of rotos, αβ2=1

and for the equation x2qx+8=0,

the product of rotos, α2β=8

Hence, (αβ2)(α2β)=8

α2β3=8αβ=2

From αβ2=1, we have β=12 and from α2.β=8, we have α=4

Hence, from sum of roots = ba, we have

p=α+β2=4+14=174 and q=α2+β=16+12=332

r8 is arithmetic mean of p and q

r8=p+q2

r=4(p+q)=4(174+332)=17+66=83



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon