Let α,β∈R be such that limx→0x2sin(βx)αx−sin x=1. Then 6(α+β) is equal to
Let α,βϵR be such that
limx→0x2sin(βx)αx−sin x=1, then 6(α+β) equals
Using the infinite series expansion of sin x, this can be written as
limx→0x2{βx−(βx)33!+(βx)55!−…}αx−{x−x33!+x55!−…}
⇒limx→0x3{β−β3x23!+β5x45!−…}x(α−1)+{x33!−x55!+…}=1
Since the value of the limit is equal to 1 we do not want the term (α−1)x to exist in the denominator. Hence α−1=0→α=1
limx→0/x3{β−β3x23!+β5x45!…}/x3{13!−x25!+…}=1
limx→0⎧⎨⎩β−β3x23!+β5x45!−…13!−x25!+…⎫⎬⎭=1
⇒β16=1⇒β=16
6(α+β)=6(1+16)=7