Thus, we have
β=α+α2+α4
=cos(2π7)+isin(2π7)+cos(4π7)+isin(4π7)+cos(8π7)+isin(8π7)
=cos(2π7)+cos(4π7)+cos(8π7)+i[sin(2π7)+sin(4π7)+sin(8π7)]
Similarly,
γ=cos(6π7)+cos(10π7)+cos(12π7)+i[sin(6π7)+sin(10π7)+sin(12π7)]
We know that
cos(2π−θ)=cosθ and sin(2π−θ)=−sinθ
⇒cos(6π7)=cos(2π−8π7)=cos(8π7)
cos(10π7)=cos(2π−4π7)=cos(4π7)
cos(12π7)=cos(2π−2π7)=cos(2π7)
and
sin(6π7)=sin(2π−8π7)=−sin(8π7)
sin(10π7)=sin(2π−4π7)=−sin(4π7)
sin(12π7)=sin(2π−2π7)=−sin(2π7)
Hence,
γ=cos(2π7)+cos(4π7)+cos(8π7)−i[sin(2π7)+sin(4π7)+sin(8π7)]
The quadratic equation with β,γ as roots is given by:
z2−(β+γ)z+βγ=0
β+γ=2[cos(2π7)+cos(4π7)+cos(8π7)]
Consider the sum cos(2π7)+cos(4π7)+cos(8π7)
This is of the form cosA+cosB+cosC with A+B+C=2π.
cosA+cosB+cosC=2cos(A+B2)cos(A−B2)+cos(2π−(A+B))
=2cos(A+B2)cos(A−B2)+cos(A+B)
=2cos(A+B2)cos(A−B2)+2cos2(A+B2)−1
=2cos(A+B2)[cos(A−B2)+cos(A+B2)]−1
=2cos(π−C2)[2cos(A2)cos(B2)]−1
=−4cos(C2)cos(A2)cos(B2)−1
So,
β+γ=2[cos(2π7)+cos(4π7)+cos(8π7)]
=2[−1−4cos(π7)cos(2π7)cos(4π7)]
=2[−1−4(−18)]=−1
βγ=[cos(2π7)+cos(4π7)+cos(8π7)]2+[sin(2π7)+sin(4π7)+sin(8π7)]2
=3+2{cos(2π7)cos(4π7)+cos(8π7)cos(4π7)+cos(2π7)cos(8π7)+... +sin(2π7)sin(8π7)}
=3+2{[cos(2π7)cos(4π7)+sin(2π7)sin(4π7)]+[cos(8π7)cos(4π7)+... +sin(2π7)sin(8π7)]}
Since cosAcosB+sinAsinB=cos(A−B),
βγ=3+2{[cos(2π7)]+[cos(4π7)]+[cos(6π7)]}
=3+2{[cos(2π7)]+[cos(4π7)]+[cos(8π7)]}
As shown above
[cos(2π7)]+[cos(4π7)]+[cos(8π7)]=−1−4cos(π7)cos(2π7)cos(4π7)
∴βγ=3+2{−1−4cos(π7)cos(2π7)cos(4π7)}
=3+2{−1−4(−18)}
=2
The equation for which β and γ are the roots:
z2−(β+γ)z+βγ=0
z2+z+2=0