The correct option is B −1
α=cos2π7+cos4π7+cos6π7
=cosθ+cos2θ+cos3θ, where θ=2π7
=2cos2θcosθ+cos2θ
=sin2θcos2θsinθ+cos2θ
=sin4θ+2cos2θsinθ2sinθ
=sin4θ+sin3θ−sinθ2sinθ
⇒α=−12
(∵sin4θ+sin3θ=sin4θ−sin4θ=0 as 7θ=2π)
β=sin2π8+sin23π8+sin25π8+sin27π8 =2(sin2π8+sin23π8) ⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩∵sin7π8=sin(π−π8)=sinπ8sin5π8=sin(π−3π8)=sin3π8⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭
=2(sin2π8+cos2π8) {∵sin3π8=sin(π2−π8)=cosπ8}
⇒β=2
Now, αβ=−1