Let α≠β, α2+3=5α and β2=5β−3. The quadratic equation whose roots are αβ and βα will be:
3x2−19x+3=0
We have,
α2−5α+3=0 (1)
β2−5β+3=0 (2)
Subtracting (2) from (1), we get
α2−5α+3−β2+5β+3=0
⇒α2−β2−5(α−β)=0
⇒(α−β)((α+β−5))=0
But α≠β ∴α+β=5 (3)
Adding (1) and (2), we get
⇒α2+β2−5(α+β)+6=0
⇒α2+β2−5(5)+6=0 [From(3)]
⇒α2+β2=19 (4)
Now, (α+β)2=α2+β2+2αβ
⇒25=19+2αβ
⇒2αβ=6⇒αβ=3 (5)
The roots of the quadratic equation are αβ and βα
∴Sum of roots =αβ+βα=α2+β2αβ=193
and product of roots=αβ×βα=1
∴ Required quadratic equation is
x2−193x+1=0
⇒3x2−19x+3=0