The correct options are
A non-singular
B skew-symmetric
Given A=[cosαsinα−sinαcosα] and α=π/5
A2=[cos2αsin2α−sin2αcos2α],
A3=[cos3αsin3α−sin3αcos3α]
and A4=[cos4αsin4α−sin4αcos4α]
We have cosα+cos2α+cos3α+cos4α
=cosα+cos2α+cos(π−2α)+cos(π−α)[∵5α=π]
=cosα+cos2α−cos2α−cosα=0
and sinα+sin2α+sin3α+sin4α
=sinα+sin2α+sin(π−2α)+sin(π−α)
=2[sinα+sin2α]
=2{2sin[3α2]cosα2}=4sin[3π10]cosπ10
=4sin[π2−π5]cosπ10
=4cosπ5cosπ10=a (say)
Thus, B=[0a−a0]
∴B is skew-symmetric.
Also, |B|=a2=16cos2π5cos2π10>0
∴B is non-singular.
Hence, options B and C.