Let ∗ be a binary operation on the set Q of rational number as follows:
(i)a∗b=a−b
(ii)a∗b=a2+b2
(iii)a∗b=a+ab
(iv)a∗b=(a−b)2
(v)a∗b=ab4
(vi)a∗b=ab2
Show that none of the operation has identity.
An element e∈Q will be the identity element for the operation ∗ if
a∗e=a=e∗a,∀a∈Q
(i)a∗b=a−b
If a∗e=a,a≠0⇒a−e=a,a≠0⇒e=0
Also, e∗a=a⇒e−a=a⇒e=2a
∴e=0=2a,a≠0
But the identity is unique. Hence this operation has no identity.
An element e∈Q will be the identity element for the operation ∗ if
a∗e=a=e∗a,∀a∈Qa∗b=a2+b2
If a∗e=a, then a2+e2=a
For a=−2,(−2)4+e2=4+e2≠−2
Hence, there is no identity element.
An element e∈Q will be the identity element for the operation ∗ if
a∗b=a+ab
If a ∗e=a⇒a+ae=a⇒ae=0⇒e=0,a≠0
Also if
⇒e∗a=a⇒e+ea=a⇒e=a1−a,a≠1
∴e=0=a1−a,a≠0
But the identity is unique. Hence this operation has no identity.
An element e∈Q will be the identity element for the operation ∗ if
a∗b=(a−b)2
If a∗e=a, then (a−e)2=a, A square is always positive. so for
a=−2,(−2−e)2≠−2
Hence, there is no identity element.
An element e∈Q will be the identity element for the operation ∗ if
a∗b=ab4
If a∗e=a,then ae4=a. Hence, e =4 is the identity element.
∴a∗4=4∗a=4a4=a
An element e∈Q will be the identity element for the operation ∗ if
a∗b=ab2
If a∗e=a⇒ae2=a
⇒e2=1⇒e=±1
But identity is unique. Hence this operation has no identity.
Therefore only part (v) has an identity element.