Let B be the centre of the circle x2+y2−2x+4y+1=0. Let the tangents at two points P and Q on the circle intersect at the point A(3,1). Then 8⋅(area△APQarea△BPQ) is equal to
Open in App
Solution
Let L= length of tangent from A to the circle and R= radius of circle ∠PAB=∠BPQ=θ ⇒ area of △PAQ=2⋅12⋅Lsinθ⋅Lcosθ=L2sinθcosθ area of △PBQ=2⋅12⋅Rsinθ⋅Rcosθ=R2sinθcosθ
Hence, area of △APQarea of△BPQ=L2R2
Now, L=√S1=√32+12−2×3+4×1+1=3
and R=2 ⇒8×(area of △APQarea of△BPQ)=8×(32)2=18