Let x,y,z be probability of B1,B2,B3 respectively.
⇒x(1−y)(1−z)=α
⇒y(1−x)(1−z)=β
⇒z(1−x)(1−y)=γ
⇒(1−x)(1−y)(1−z)=p
Now (α−2β)P=αβ
⇒[x(1−y)(1−z)−2y(1−x)(1−z)](1−x)(1−y)(1−z) =xy(1−x)(1−y)(1−z)2
⇒x+xy−2y=xy
∴x=2y…(1)
similarly, (β−3γ)p=2βγ
⇒y=3z⋯(2)
From (1) & (2)
⇒x=6z
Hence xz=P(B1)P(B3)=6