Let ¯a,¯b,¯cbe three non coplanar vectors. Define →v1,→v2,→v3 by →v1=→b×→c[→a→b→c],→v2=→c×→a[→a→b→c],→v3=→a×→b[→a→b→c] which of the following statements is false?
A
→a.→v1+→b.→v2+→c.→v3=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[→v1→v2→v3]=1[→a→b→c]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
[→v1×→v2→v2×→v3→v3×→v1]=1[→a→b→c]2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A→a.→v1+→b.→v2+→c.→v3=0
Using [¯V1¯V2¯V3]=[¯aׯb¯bׯc¯cׯa][¯a¯b¯c]=[¯a¯b¯c]2[¯a¯b¯c]3=1[¯a¯b¯c]¯a.¯v1+¯b.¯v2+¯c,¯v3=∑¯a.¯bׯc[¯a¯b¯c]=3,[v1v2v3]=1[¯a¯b¯c]∑[v1v2v3]=[abc]2[abc]3