Let ¯x be the mean of x1,x2,…,xn. and ¯y be the mean of y1,y2…,yn If ¯z is the mean of x1,x2,…,xn,y1,y2,…yn, then ¯z=?
(a) (¯x+¯y)
(b) 12(¯x+¯y)
(c) 1n(¯x+¯y)
(b) 12n(¯x+¯y)
The correct option is (b): 12(¯¯¯x+¯¯¯y)
Given:
¯¯¯x=(x1+x2+.....xn)n
⇒x1+x2+......+xn=n¯¯¯x……(i)
and, ¯¯¯y=(y1+y2+......+yn)n
⇒y1+y2+......+yn=n¯¯¯y……(ii)
Now, ¯¯¯z=(x1+x2+...+xn)+(y1+y2+...+yn)2n
∴ ¯¯¯z=(n¯¯¯x+n¯¯¯y)2n [From eq.(i) and (ii)]
=12(¯¯¯x+¯¯¯y)