The correct option is B Commutative but not Associative
Let a,b,c∈R
Then a∗b=a+b4=b+a4=b∗a ∀ a,b∈R
Thus, ∗ is commutative on R.
Now, (a∗b)∗c=a+b4∗c
=14(a+b4+c)
=a+b+4c16
a∗(b∗c)=a∗b+c4
=14(a+b+c4)
=4a+b+c16
Thus, (a∗b)∗c≠a∗(b∗c) ∀ a,b,c∈R
Thus, ∗ is not associative on R.