Let ∣∣
∣
∣∣a2+1abacabb2+1bcacbcc2+1∣∣
∣
∣∣=k+a2+b2+c2 then 4k is
Open in App
Solution
Let Δ=∣∣
∣
∣∣a2+1abacabb2+1bcacbcc2+1∣∣
∣
∣∣ First multiplying R1,R2,R3 by a,b,c respectively and taking a,b,c common from C1,C2,C3 respectively, we get Δ=abcabc∣∣
∣
∣∣a2+1a2a2b2b2+1b2c2c2c2+1∣∣
∣
∣∣ Now Applying R1→R1+R2+R3 then Δ=∣∣
∣
∣∣1+a2+b2+c21+a2+b2+c21+a2+b2+c2b2b2+1b2c2c2c2+1∣∣
∣
∣∣ Taking 1+a2+b2+c2 from R1, then Δ=(1+a2+b2+c2)∣∣
∣
∣∣111b2b2+1b2c2c2c2+1∣∣
∣
∣∣ Applying C2→C2−C1, then Δ=(1+a2+b2+c2)∣∣
∣
∣∣101b21b2c20c2+1∣∣
∣
∣∣ Expanding along C2, then Δ=(1+a2+b2+c2).1.∣∣∣11c2c2+1∣∣∣ =(1+a2+b2+c2).1.1 Thus, Δ=1+a2+b2+c2