The correct option is C -11
Let Δ(X)=∣∣
∣∣x2xx2x6xx6∣∣
∣∣⇒Δ(1)=0∴Δ′(x)=∣∣
∣∣101x2x6xx6∣∣
∣∣+∣∣
∣∣x22x2x10xx6∣∣
∣∣+∣∣
∣∣x2xx2x6110∣∣
∣∣Δ′(1)=0+∣∣
∣∣121210116∣∣
∣∣+∣∣
∣∣121116110∣∣
∣∣
=-17 +6 =-11
Now, Δ(1)+Δ′(1)=5A+4B+3C+4D+E=−11
Alternative method
Multiplying both sides by x, then
∣∣
∣
∣∣x22xx2x2x6xx6∣∣
∣
∣∣=Ax5+Bx4+Cx3+Dx2+Ex
Differentiating both sides w. r. t. x, then
∣∣
∣∣2x22xx2x6xx6∣∣
∣∣+∣∣
∣∣x22xx22x10xx6∣∣
∣∣+∣∣
∣
∣∣x22xx2x2x6110∣∣
∣
∣∣
=5Ax4+4Bx3+3Cx2+2Dx+E
∣∣
∣∣222116116∣∣
∣∣+∣∣
∣∣121210116∣∣
∣∣+∣∣
∣∣121116110∣∣
∣∣=5A+4B+3C+2D+E
⇒0+1(6)−2(12)+1(2−1)+1(−6)−2(0−6)+1(1−1)=5A+4B+3C+2D+E
Hence, 5A, + 4B + 3C + 2D + E = -11