Let C be a curve defined by y=ea+bx2. The curve C passes through the point P(1,1) and the slope of the tangent at P is (−2). Then the value of (2a−3b) is
Open in App
Solution
y=ea+bx2, passes through (1,1) ⇒1=ea+b⋯(1) ⇒a+b=0⋯(2) ⇒(dydx)=ea+bx2⋅2bx ⇒(dydx)(1,1)=−2 ⇒ea+b(1)2⋅2b(1)=−2
Using (1), we get b=−1
Using (2), we get a=1 ⇒2a−3b=5