Let c be the arbitrary constant, then the solution of the differential equation ex coty dx+(1āex)cosec2y dy=0 is
(1−ex)coty=c
(ex−1)cosec2y=c
(ex−1)coty=c
(ex−1)=c(coty)
exdxex−1=cosec2ydycoty
Integrating , we get
log(ex−1)+logcoty=logc
⇒(ex−1)coty=c
Let I =∫exe4x+e2x+1dx.J=∫e−xe−4x+e−2x+1dx,Then, for an arbitrary constant c, the value of J-I equals
Solution of differential equation dydx+tanyx=xexsecy is