The correct option is
A a2+b2Given hyperbola : x2a2−y2b2=1
equation of tangent at P(x1,y1) is
T : xx1a2−yy1b2=1 ....... (1)
(wherex12a2−y12b2=1) ......... (2)
Point of intersection of tangent T and lines
of y=bax ⇒xx1a2−y1ab=1
⇒x=(a2+y1ab)1x1
&y=(ab+y1)1x1
Q : ((a2+y1ab)1x1,(ab+y1)1x1)
of y=−bax ⇒x=(a2−y1ab)1x1⇒y=(ab−y1)1x1
R : ((a2−y1ab)1x1,(ab−y1)1x1)
To find ¯¯¯¯¯¯¯¯¯CQ.¯¯¯¯¯¯¯¯CR=√[(a2+y1ab)1x1]2+[(ab+y1)1x1]2.√[(a2−y1ab)1x1]2+[(ab−y1)1x1]2
=
⎷1x12[a4−y12a2b2]+1x12[a2b2−y12]2+1x14[2(a3b−y12ab)]
=
⎷1x14[x12(a4−y12a2b2−y12+a2b2)+2(a3b−y12ab)]
⇒ Now put (x1,y1)as(asecα,btanα) and they do give
⇒√a4+2a2b2+b2
=a2+b2