Let C be the curve y=x3 (where x takes all real values). The tangent at a point A meets the curve again at B. If the gradient at B is K times the gradient at A then K is equal to
4
dydx=3x2=3t2 at ′A′
∴ 3t2=T3−t3T−t=T2+Tt+t2⇒ T2+Tt−2t2=0⇒ (T−r)(T+2t)=0⇒T=t or T=−2t (T = t is not possible)
now, mA=3t2;mB=3T2
⇒ mBmA=T2t2=4t2t2 (using T=−2t)
Hence the correct option is (a)