Let "C" be the number of Combinations and "P" be the number of Permutations of 4 letters taken from the word EXAMINATION. If the sum of digits of C+P is k, then find the value of k2.
Open in App
Solution
There are 11 letter A,A,I,I,N,N,E,X,M,T,O Then the no. of combinations = coefficient of x4 in (1+x+x2)3(1+x)5(∵2A′s,2I′s,2N′s,1E,1X,1M,1Tand1O) =Coefficient of x4in{(1+x)3+x6+3(1+x)2x2+3(1+x)x4}(1+x)5 =Coefficient of x4in{(1+x)8+x6(1+x)5+3x2(1+x)7+3x4(1+x)6} =8C4+0+3.7C2+3 =8.7.6.51.2.3.4+3.7.61.2+3 =70+63+3 =136 And No. of permutations =coefficient of x4in4!(1+x1!+x22!)3(1+x1!)5 =coefficient of x4in4!(1+x+x22)3(1+x)5 =coefficient of x4in4!{(1+x)3+x68+32(1+x)2x2+34x4(1+x)}(1+x)5 =coefficient of x4in4!{(1+x)8+x68(1+x)5+32x2(1+x)7+34x4(1+x)6} =4!{8C4+0+32.7C2+34} =4!{8.7.6.51.2.3.4+32.7.61.2+34} =8.7.6.5+6(3.7.6)+6.3 =1680+756+18 =2454 ∴ Sum of digit is k=16